Search results for " oxygen vacancy"

showing 5 items of 5 documents

EPR on Radiation-Induced Defects in SiO2

2014

Continuous-wave electron paramagnetic resonance (EPR) spectroscopy has been the technique of choice for the studies of radiation-induced defects in silica (SiO2) for 60 years, and has recently been expanded to include more sophisticated techniques such as high-frequency EPR, pulse electron nuclear double resonance (ENDOR), and pulse electron spin echo envelope modulation (ESEEM) spectroscopy. Structural models of radiation-induced defects obtained from single-crystal EPR analyses of crystalline SiO2 (alfa-quartz) are often applicable to their respective analogues in amorphous silica (a-SiO2), although significant differences are common.

Electron nuclear double resonanceMaterials sciencePulse (signal processing)Settore FIS/01 - Fisica SperimentaleRadiation inducedOxygen vacancylaw.inventionNuclear magnetic resonancelawSingle-crystal and glass EPR multi-frequency EPR pulse ENDOR pulse ESEEM coordinate system oxygen vacancy silicon vacancy impurity defects electronic structures dynamic propertiesAmorphous silicaElectron paramagnetic resonanceSpectroscopyEnvelope (waves)
researchProduct

Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure

2021

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540) as well as by the Latvian research council via the Latvian National Research Program under the topic ?High-Energy Physics and Accelerator Technologies?, Agreement No: VPP-IZM-CERN-2020/1-0002 for A.I. Popov. In addition, J. Purans is grateful to the ERAF project 1.1.1.1/20/A/057 while A. Platonenko was supported by Latvian Research Council No. LZP-2018/1-0214. The authors thank A. Lushchik and M. Lushchik for many useful discussions. The research was (partly) performed in the Institute of Solid State Physics, University of Latvia ISSP UL. ISSP UL as…

TechnologyDEEP DONOR02 engineering and technologyConductivityDFT01 natural sciencesOXYGENCrystalpoint defectsGeneral Materials ScienceDENSITY FUNCTIONAL THEORYGalliump-type conductivityMicroscopyQC120-168.85Condensed matter physicsMONOCLINICSTP TYPE CONDUCTIVITYELECTRONIC.STRUCTUREEngineering (General). Civil engineering (General)021001 nanoscience & nanotechnology3. Good healthCALCULATIONSβ-Ga<sub>2</sub>O<sub>3</sub>OXYGEN VACANCIES:NATURAL SCIENCES [Research Subject Categories]Density functional theoryElectrical engineering. Electronics. Nuclear engineeringTA1-20400210 nano-technologyPOINT DEFECTSFIRST PRINCIPLE CALCULATIONSβ-Ga2O3Materials scienceP-TYPE CONDUCTIVITYELECTRONIC STRUCTUREVACANCY DEFECTSchemistry.chemical_elementElectronic structureFIRST-PRINCIPLE DENSITY-FUNCTIONAL THEORIESGALLIUM COMPOUNDSArticleDENSITY-FUNCTIONAL-THEORYVacancy defect0103 physical sciences010306 general physicsΒ-GA2 O3QH201-278.5HYBRID EXCHANGEoxygen vacancyCrystallographic defectTK1-9971Descriptive and experimental mechanicschemistryGALLIUMdeep donorSupercell (crystal)DFT; β-Ga<sub>2</sub>O<sub>3</sub>; oxygen vacancy; deep donor; p-type conductivity; point defectsOXYGEN VACANCYMaterials
researchProduct

Sr Doping and Oxygen Vacancy Formation in La1−xSrxScO3−δ Solid Solutions: Computational Modelling

2022

The study was performed with the financial support from the Latvian Council of Science under the grant agreement LZP-2020/2-0009. Calculations were performed at the HLRS, University of Stuttgart, within the project 12939 DEFTD. The Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2.

Inorganic ChemistryF-centreGeneral Chemical Engineering:NATURAL SCIENCES::Physics [Research Subject Categories]General Materials Scienceoxygen stoichiometryoxygen vacancyCondensed Matter PhysicsDFTlanthanum scandate; oxygen vacancy; oxygen stoichiometry; F-centre; DFTlanthanum scandateCrystals
researchProduct

First principles calculations on CeO2 doped with Tb3+ ions

2019

This research was funded by the Latvian Council of Science (under the grant project lzp-2018/1-0147). Authors thank W. Chueh, J. Serra, R. Merkle, A. Popov for fruitful discussions.

Materials scienceHubbard modelchemistry.chemical_element02 engineering and technologyCrystal structureElectronic structure010402 general chemistryPolaron01 natural sciencesOxygenMolecular physicsIonInorganic ChemistryCondensed Matter::Materials ScienceFormation energy of oxygen vacancyTb3+:NATURAL SCIENCES:Physics [Research Subject Categories]Electrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopyOrganic ChemistryDoping021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsSmall polaronchemistry(CeTb)O20210 nano-technologyGround stateDFT+UOptical Materials
researchProduct

Oxygen Vacancy Formation and Migration within the Antiphase Boundaries in Lanthanum Scandate-Based Oxides: Computational Study.

2022

The study was performed with the financial support from the Latvian Council of Science under the grant agreement LZP-2020/2-0009. Calculations were performed at the HLRS, University of Stuttgart, within the project 12939 DEFTD. The Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2.

oxygen transportLa<sub>1−<i>x</i></sub>Sr<i><sub>x</sub></i>ScO<sub>3−<i>δ</i></sub>; lanthanum scandate; perovskite; antiphase boundaries; oxygen vacancy; oxygen transport; DFTGeneral Materials Science:NATURAL SCIENCES::Physics [Research Subject Categories]La1−xSrxScO3−δantiphase boundariesoxygen vacancyDFTperovskitelanthanum scandateMaterials (Basel, Switzerland)
researchProduct